
The Rengo Group's Decarbonization Initiatives ==Production of bioethanol for SAF==

Rengo Group's efforts against climate change

Boiler fuel conversion

- Realization of coal phase-out
- Construction of a new biomass boiler

From coal to biomass

▲ Rengo Kanazu Plant (underconstruction)

From city gas to biomass

▲ Rengo Yashio Plant

From LNG to biomass

▲ Rengo Tonegawa Plant

Expanding the use of renewable electricity

Introduction of solar power generation equipment

▲ Rengo New Kyoto Office

▲ Kato Corrugated Cardboard

▲ Rengo Ehime Toon Plant

Creation of new value as a package provider

Demand for ethanol for SAF is expected to grow. The Rengo Group is capable of producing ethanol using raw materials such as construction waste and corrugated waste paper. THE COMPANY AIMS TO PRODUCE 20,000 KL/YEAR OF ETHANOL

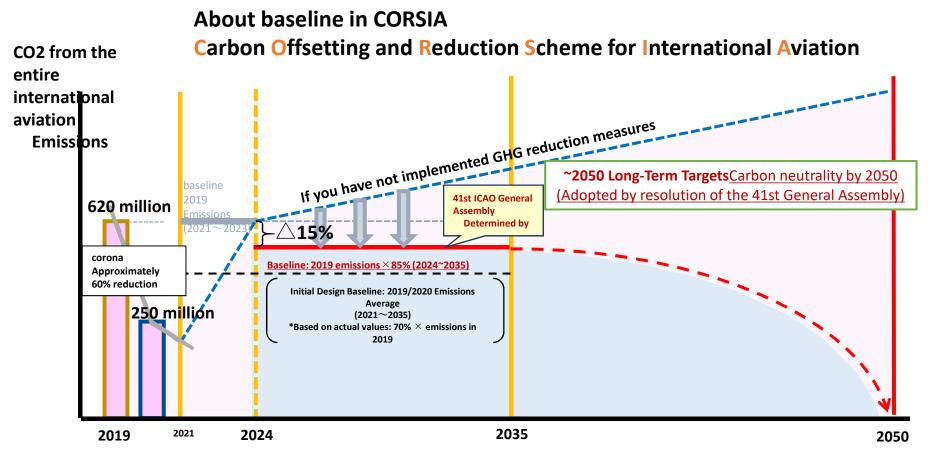
大興製紙株式会社 TAIKO PAPER MFG.,LTD

〒416-0942 Shizuoka Prefecture Fuji City Kamiyokowari 1

- Industrial paper production
- Pulp production (300 tons/day)

"Mt. Fuji" in front of the factory

Annex Standard (D7655)


SAF via ethanol is Annex 5,

and SAF is manufactured from cooking fats and oils used in Japan. Annex2.

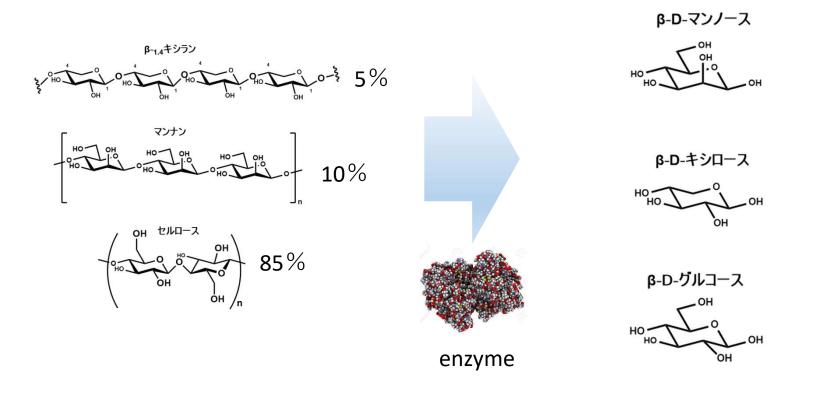
Annex	technology	Upper Mixing Rate (%)	raw material
Annex1	FT Synthesis	50	Organic matter in general
Annex2	Synthetic parafinkerosene purified by hydrogenation of vegetable oils (Bio-SPK or HEFA)	50	Bio-based oils
Annex3	Isoparaffin (SIP) derived from fermented hydrotreated sugars	10	Biomass sugar and paper waste
Annex4	Synthesis of alkylated aromatics derived from non-fossil resources Kerosene (SPK/A)	50	Organic matter in general
Annex5	Synthetic paraffin kerosi derived from alcohol to jets (ATJ-SPK)	50	Biomass sugar and paper waste,etc
Annex6	Catalytic Hydrothermolysis Jet (CHJ)	50	Bio-based oils
Annex7	Hydrocarbon-HEFA (HC-HEFA)	10	Microalgae

By 2035, GHG emissions will be 85% of 2019 levels.

SAF stands for Sustainable Aviation Fuel, which means sustainable aviation fuel. Compared to conventional aviation fuel, By using biomass and waste cooking oil as raw materials, it is expected to significantly reduce carbon dioxide emissions.

Source: November 7, 2022 Revised materials submitted by the Secretariat of the 2nd Public-Private Council for Promoting the Introduction of Sustainable Aviation Fuel (SAF) (Ministry of Land, Agriculture, Transport and Tourism)

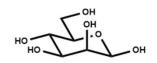
In May 2023, at the third meeting of the SAF Public-Private Council, the supply target and support were set at "2030 in Japan.

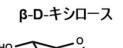

 <u>The annual supply target is 10% of aviation fuel</u> <u>consumption.">>>1,700,000KL/Y(SAF)</u>

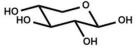
Support for SAF produced in Japan.
 The subsidy amount at this time is 30,000 yen (200USD)/KL

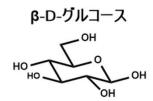
• Up to 40% of corporate tax can be deducted (For semiconductors, the carry-over period is 3 years, and up to 20% of corporate tax can be deducted.)

Pulp is made of "sugar"

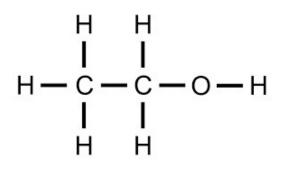

The chips are converted into pulp, which is then broken down by enzymes into "sugars". Sugars are converted to ethanol by yeast.




Corrugated base paper and ordinary paper are 85% cellulose (a polymer of glucose). Cellulose is broken down by enzymes to become glucose.

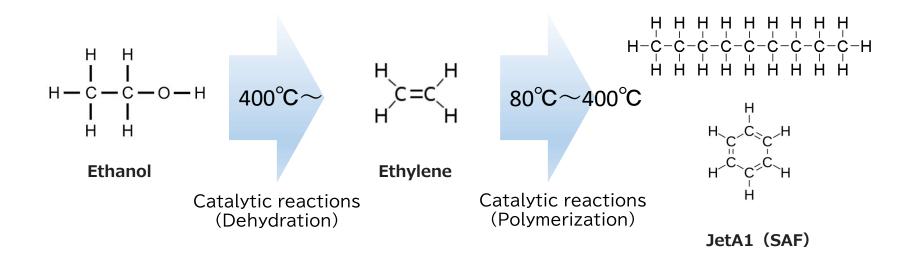

Carbohydrates are converted to ethanol

β-D-マンノース

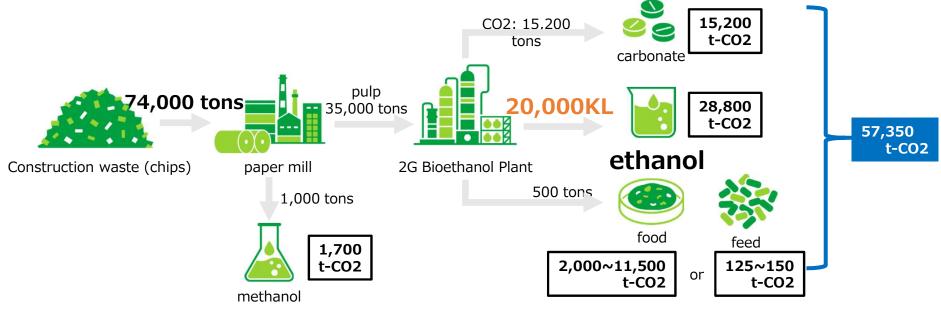

Sugar concent : 20%

Yeast produces ethanol from sugars.

yeast


Ethanol concent : 10%

ethanol


Synthesize SAF from ethanol

Ethanol is dehydrated and converted to ethylene. Ethylene forms hydrocarbons (linear, benzene ring)

Taiko Paper: Overview of Business Plan(2023~)

- Obtained a subsidy of approximately 10 billion yen with the support of NEDO.
- PRODUCES 20,000 KL/Y OF ETHANOL
- GHG reduction is 57,350 t-CO2

Expected CO2 reduction

In addition to ensuring the CO2 reduction effect of bioethanol, which is the main product,

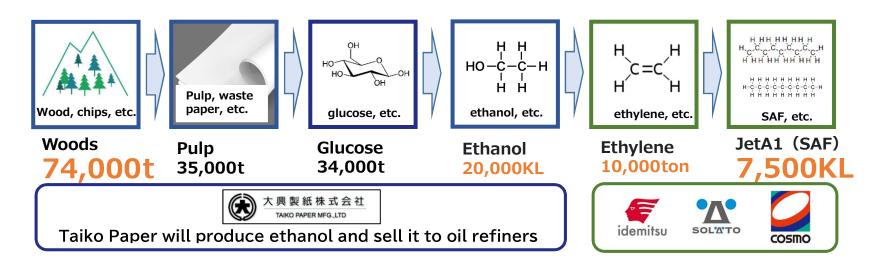
We will research and develop a biomanufacturing system with a high CO2 reduction effect by using methanol as a by-product as a chemical product, carbonate carbon dioxide, and turning process bacterial residues into food and feed.

SAF supply and production system in Japan

Idemitsu Kosan, Cosmo Oil, Taiyo Oil

Installed ATJ (Alcohol-to-Jet) equipment

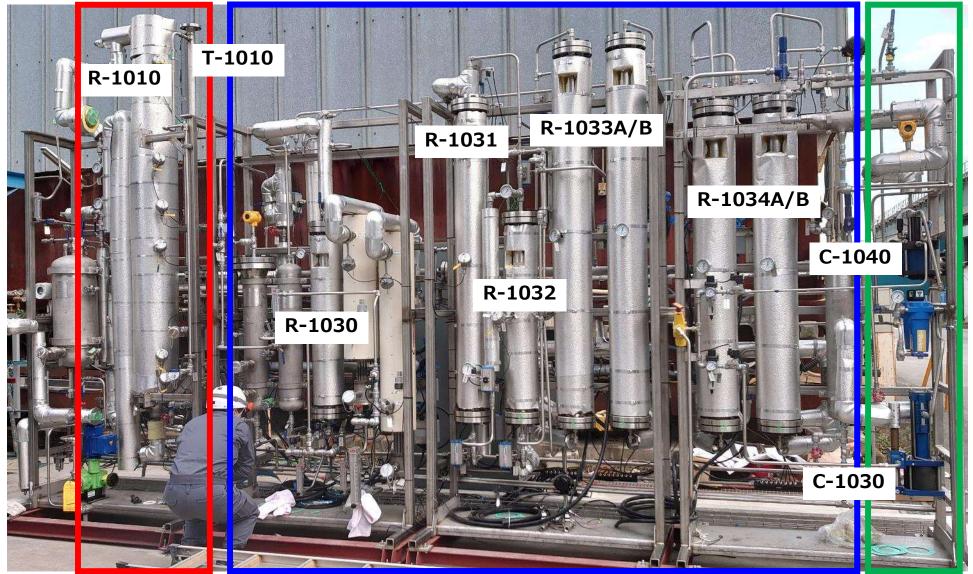
The demand for ethanol is about **500,000 KL/Y** for the three companies.


The ethanol produced by Taiko Paper will be supplied to

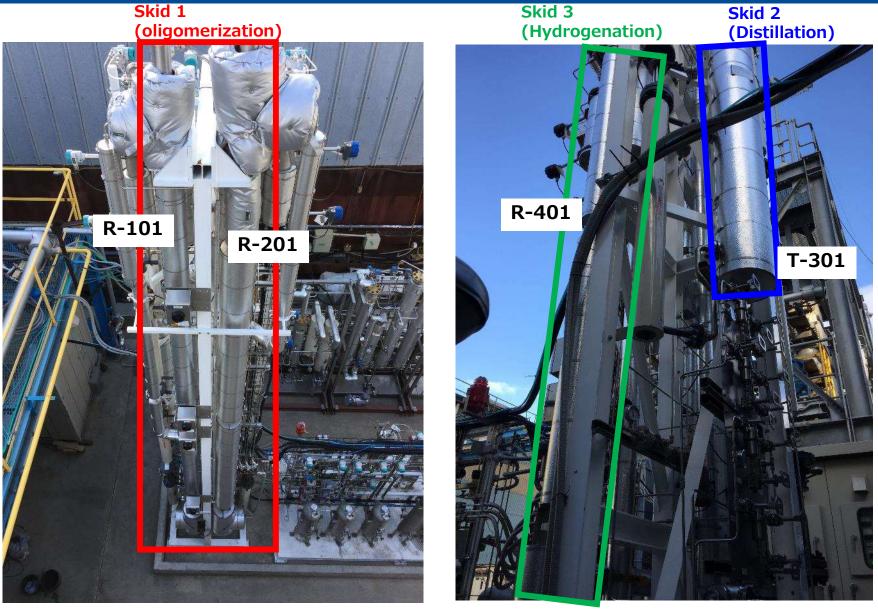
the SAF production system in Japan

Material balance in each process

74,000 tons of chips can produce 7,500 KL of SAF


The Rengo Group has a test plan to produce SAF from ethanol. It is important to check the conversion efficiency of ethanol produced from chips and hips to SAF.

Ethylene production equipment (ethanol to ethylene reforming process, Petron)


Skid 1 (dehydration reaction)

Skid 2 (impurity removal)

compressor

Jet fuel production equipment (ethylene to hydrocarbon reforming process, Byogy)

Material balance in each process

SAF can be produced using a self-made catalyst (recovery rate is still improving)

	Byogy Catalyst	Self-made catalysts(Davicat [®] 3111)		
Amount of recovery	8.9~15.8 L/D	3.2~8.8 L/D		
Conversion rate	31.3%	8.5~15.1%		
Recovered Fuel	Crude Heavy Gasoline Raw Jet Heavy Oil Jet	Crude Hydrocarbon Naphtha Gasoline Raw Jet Heavy Oil Jet Image: A straight of the		
Feature	 Jet: Nearly compliant with Annex 8 (ATJ-SKA) standard Heavy Oil: Meets the quality requirements of Light oil (JIS K2204) Special No. 1⁻No. 3, Heavy oil (JIS K2205) Class 1 No. 1 	 The proportion of Aromatics in crude hydrocarbons is less than 10% → hydrogenation, Likely to comply with Annex 5/8 Analysis of Jet and Heavy Oil is currently underway 		

Summary

•The Rengo Group aims to reduce GHG emissions by 46% by 2030 compared to 2013.

•Ethanol production at pulp& Paper and the use of by-products are expected to reduce CO2 emissions by 57,000 t-CO2.

Achieve 20,000 KL/Y of ethanol production derived from nonedible raw materials (around 2027)

•Ethanol produced by the Rengo Group is applicable to SAF (Annex 5 and 8).

•SAF production technology has been acquired, but production efficiency needs to be improved.

Wood chips and pulp are used as raw materials for ethanol, so they are compatible with the ethanol business. Therefore, it is expected that the business will expand in the future. Not only as an environmental measure, but also to monetize the ethanol business.

FIN